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Soliton motion in a parametrically ac-driven damped Toda lattice

K. O” . Rasmussen, Boris A. Malomed,* A. R. Bishop, and Niels Gro”nbech-Jensen
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 1 June 1998!

We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a
soliton in a Toda lattice with friction, while an unstaggered driving force cannot. A physical context of the
model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac
driving force is generated by a standing acoustic wave excited on the surface. Simulations demonstrate that the
state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually
relaxes back to the equilibrium state that existed before the passage of the soliton. The perturbation theory
predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical
prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two
counterpropagating solitons is also simulated, demonstrating that the collisions are, effectively, fully elastic.
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PACS number~s!: 46.10.1z, 63.20.Ry, 03.40.Kf
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The important role of collective nonlinear excitations
the form of solitons in several condensed-matter phys
contexts is widely recognized@1#. Particularly, discrete non
linear models have received an increased amount of atten
lately @2#. Actual observation of nontrivial dynamical effec
in realistic systems is often impeded by friction. An exte
nally supplied driving force is therefore necessary to sus
a soliton in power balance with friction. In the simplest ca
progressive motion of a soliton in the presence of dissipa
is supported by a dc driving force@3#, which in fact is the
only possibility in a homogeneous continuum medium.
less obvious but physically important option is to drive
soliton by an ac force~with no dc component! @4#. It has
been done in a continuum system subjected to a peri
spatial modulation@5#, and in a discrete system in the for
of a chain of nonlinearly interacting particles@6,7#.

A simple example of the latter system is the ac-driv
damped Toda lattice~TL!

ẍn1exp~xn2xn21!2exp~xn112xn!

52a ẋn1~21!ne sin~vt !, ~1!

wherexn is the displacement of thenth particle,e andv are
the amplitude and frequency of the driving force, anda is
the friction coefficient. This model describes a chain of no
linearly coupled particles in a dissipative environment driv
by an externally applied electric ac field. The alternating s
in front of the driving term, (21)n ~a discrete pattern of this
type is frequently calledstaggered@8#!, implies alternating
electrical charges of the particles in the chain; without
multiplier (21)n, the driving term can be trivially elimi-
nated from Eq.~1!. In Ref. @6#, it was demonstrated analyt
cally and numerically that the model~1! indeed supports
progressive motion of a soliton in the presence of finite fr
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tion ~this was accomplished for this model in the so-call
dual form!. ac-driven motion was predicted and found at t
resonantsoliton velocities

V5v/p~2n11!, n50,61,62, . . . , ~2!

i.e., the velocity of the ac-driven motion is directly con
trolled by the driving frequency.

The objective of the present work is to study moving so
tons in a similar but essentially different model, viz., apara-
metricallyac-driven damped TL, with the driving taken bo
in the staggered form,

ẍn1exp~xn2xn21!2exp~xn112xn!

52a ẋn1~21!ne sin~vt !xn , ~3!

and in the unstaggered one, differing from Eq.~3! by the
absence of the multiplier (21)n. The model~3! describes a
physical system in the form, for example, of a chain of p
ticles adsorbed on a solid surface and interacting through
anharmonic repulsive potential. Additionally, the particl
interact with a uniform external field aligned perpendicu
to the adsorbing surface.~The field may simply be gravita
tion, or a dc electric field.! In the latter case, all the particle
are assumed to have the same charge~and the interaction
between them within the chain is generated by the char
through Coulomb repulsion!. The effective drive is induced
by a standing acoustic~elastic! wave excited on the surface
the end particles in the chain being fixed at the surface ed
If the length of the surface isL, and the number of particle
is N11 then the repelling particles are separated by the
tance L/N in the equilibrium state. The finite size of th
surface selects the wavelengths of the standing elastic w
l52L/M , whereM is an arbitrary integer. Commensurab
ity between the adsorbed chain and the standing wave t
place providedM5pN, wherep51,2,3, . . . . If the com-
mensurability indexp is odd, starting fromp51, the distance
between neighboring particles in the adsorbed chain is e
to an odd number of the standing half-waves, hence the
driving forces acting upon the neighboring particles arep

s,
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FIG. 1. Typical examples of a moving fron
with the staggered driving force:~a! weak friction
(a50.01) and~b! relatively strong friction (a
50.18). In both cases,e50.2 andv512.4.
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out of phase, yielding the staggered form of the driving te
in Eq. ~3!. Oppositely, whenp is even, the phase shift be
tween the neighboring particles is a multiple of 2p corre-
sponding to the unstaggered driving force. Finally, it is n
essary to specify the boundary conditions for the stand
elastic wave. If the edges of the surface are fixed, the
ticles in the adsorbed chain are located at the nodes~zero-
amplitude points! of the standing wave. It is easy to see th
in this case the external field oriented perpendicular to
surface gives rise to the direct driving-force term in Eq.~1!.
On the other hand, if the edges are free, the particles
located at the standing-wave maximum-amplitude poin
which gives rise to theparametricdrive in Eq.~3! ~for suf-
ficiently smallxn).

In the following we will first numerically demonstrate tha
the model~3! is able to sustain propagating solitonlike sol
tions whose velocity is locked by the frequency of the driv
Further, we demonstrate that only in the presence of thestag-
gereddriving force are the solitonlike solutions supporte
Locking of the velocity to the driving frequency, and the fa
that the solitonlike solutions need a staggered drive to ex
is then explained analytically and the threshold of the driv
amplitude is found. Finally the relaxation dynamics of t
particles in the wake of the soliton is studied analytically

The system of equations~1! was solved numerically for a
chain consisting of 500 particles. The natural initial con
tion is the exact soliton solution of the unperturbed TL,

xn~ t !52 lnF11
~j2221!

@11j22~n2n02Vt!#
G , ~4!

where the real parameterj (21,j,1) determines the
properties of the soliton~width and velocity!, and n0 is an
arbitrary phase constant. The velocityV is
-
g
r-

t
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V5~j21/j!/ ln~j22!. ~5!

Launching the soliton~4! into the system~3! gives rise to
scenarios such as those depicted in Figs. 1~a! and 1~b!. In the
case of Fig. 1~a!, the friction is very weak (a50.01), and
the initial kink transforms into a propagating front. In th
wake of the front, the particles demonstrate relatively la
oscillations, slowly relaxing to their equilibrium positions. I
the case of stronger friction (a50.18), Fig. 1~b! shows that
the front is still created, but the oscillations of the particles
its wake are strongly overdamped, so that they relax rap
to the initial positions. In the latter case, the net shift in t
position of each particle generated by the passing fron
zero, making the driven front a more local phenomenon th
the soliton of the unperturbed TL.

The situation is quite different when the unstaggered d
ing force is applied. Figure 2 shows a representative exam
of the motion of a driven front in this case. The front is se
to form in much the same fashion as in the model with
staggered drive. However, the front is gradually decreas
its amplitude and eventually ceases to exist. Neverthel
the decay time may be rather long, up to 100 periods of
ac drive.

Since the front in the staggered model behaves simila
to a soliton, it is interesting to launch counterpropagat
fronts and observe their collision. An example is shown
Fig. 3, where it is clearly seen that the fronts survive t
collision. A closer study of trajectories of the two fron
shows that the velocity is unchanged by the collision a
more surprisingly,no phase shiftoccurs.

We now investigate the observed phenomenon ana
cally and specify the region of its existence in parame
space. As in@6#, the analytical consideration will be based o
the perturbation theory, assuminga ande to be sufficiently
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FIG. 2. A representative example of the mo
ing front in the case of the unstaggered drivin
force. The parameters area50.02, e50.2, and
v512.4.
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small. In the zeroth-order approximation, the exact soli
solution to the unperturbed TL equation is given in Eq.~4!.
Passage of the soliton through a given particle gives ris
its displacement:

Dxn5E
2`

1`

ẋn~ t !dt5sgnj ln~j22!. ~6!

If the drive is taken in the staggered form, as in Eq.~3!, the
analysis similar to that of Ref.@6# shows that the ac-driven
motion of the soliton is expected at the same resonant ve
ties ~2!. The unstaggered drive gives rise to the other sp
trum of the resonant velocities,

V5v/2pn, n561,62, . . . . ~7!

The goal of the analytical approach is to predict the mi
mum ~threshold! valuee thr of the ac-drive amplitudee that is
sufficient to compensate the friction and allows progress
motion of the soliton. Each value of the integern in Eqs.~2!
and ~7! should thus give rise to a corresponding functi
e thr(a,v). Steady motion of the soliton through the damp
driven lattice is possible if the momentum lost by each p
ticle under the action of the friction force,2a ẋn , is bal-
anced by the momentum input from the driving force
(21)ne sin(vt)xn . The momentum loss of the particle can
calculated as

~DP! loss52aE
2`

1`

ẋn~ t !dt52a sgnj ln~j22!, ~8!

where Eq.~6! was used. The momentum input is
n

to

i-
-

-

e

-

~DP! input5~21!neE
2`

1`

sin~vt !Xn~ t !dt

[~21!nev21E
2`

1`

cos~vt !Ẋn~ t !dt, ~9!

where integration by parts was performed and the contri
tion from t→6` was neglected~since it is zero on average!.
The integral in Eq.~9! can be calculated explicitly, inserting
the expression forẊn(t) following from the unperturbed
soliton solution ~4!. The result depends on the arbitrar
phase constantn0 ; the threshold is determined by equatin
the largest possible absolute value of the momentum inp
~9! to the absolute value of the momentum loss~8!. After a
simple calculation, this leads to the equality

a ln~j22!5
2p

v
e thr

usin$ 1
2 @v/~j21/j!# ln~j22!%u
sinh@pv/~j21/j!#

.

~10!

Replacing the combination (j21/j)21ln(j22) by what fol-
lows from Eq.~5!, and using the resonant relations~2! or ~7!,
one immediately concludes that in the case~7!, correspond-
ing to the unstaggered drive, the factor multiplyinge thr in Eq.
~10! vanishes. This implies that the progressive motion of t
soliton cannot be supported by the unstaggered ac driv
the presence of the friction. This agrees with our numeri
observations. However, substitution of Eq.~2! for the stag-
gered driving leads to a finite threshold,
ic
e

FIG. 3. A typical example of the quasielast
collision between two ac-driven solitons. Th
values of the parameters aree50.2, a50.1, and
v512.4.
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FIG. 4. The dependence between the drivi
frequencyv and the maximum friction coeffi-
cient a at which a stable moving soliton can b
supported by the ac drive with the fixed amp
tudee50.2. The dots are results of direct nume
cal simulations of Eq.~3!. The dash-dotted and
dashed curves represent, respectively, the ana
cal results provided by the full perturbative ap
proximation based on Eqs.~11! and ~12!, and by
the simplified approximation~15!. The parts of
the curves beneath the turning points are irr
evant~see text!.
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e thr5
av

2p
ln~j0

22!sinhS pv

j021/j0
D[a f ~v!, ~11!

where the parameterj0 is determined, as a function ofn and
v, by a transcendental equation following from Eqs.~2! and
~5!:

p~2n11!~j021/j0!5v ln~j0
22!. ~12!

Note that the linear relationship betweene thr anda in Eq.
~11! is an evident feature of the first-order approximation
the perturbation theory@6#. The functione thr is given implic-
itly by Eqs. ~11! and~12!. To obtain an explicit dependenc
one needs to solve Eq.~12! for j0 , which cannot be done
analytically, but an approximate solution is given by

j0
21'

2v

p~2n11!
lnF 2v

p~2n11!G , ~13!

provided that the driving frequency is sufficiently large,
that

lnF 2v

p~2n11!G@ lnF lnS 2v

p~2n11! D G . ~14!

In this limit, expression~11! takes an approximate explic
form,

e thr5
av

p
lnS 2v

p~2n11! D
3sinhF1

2
p2~2n11!/ lnS 2v

p~2n11! D G . ~15!

In order to verify the analysis we have compared
simulations with the analytical results, and found that
propagating soliton can be created and sustained at reso
velocities given by Eq.~2! when the soliton parameterj is
chosen in accordance with Eq.~12!. Further, we have found
that the soliton velocity locks to the driving frequency ev
when the initial velocity deviates slightly from th
f

e
e
ant

resonance-locked value. That is, the simulations demons
that if the initial velocity fulfills (v2dv)/p,V,(v
1dv)/p, wheredv.3, the soliton will be created and sus
tained at the resonant velocity.

The threshold of the driven motion was measured num
cally in the following way. At a fixed value of the driving
amplitudee, the simulations were run at different values
v, gradually increasing the friction coefficient until reachin
a maximum valueamax, beyond which the drive could no
longer support the stable moving soliton. In terms of E
~11!,

amax~e,v!5e/ f ~v!, ~16!

this procedure implies a way to numerically measure
function f (v).

In Fig. 4, the numerically obtained dependenceamax(v) is
plotted, along with the analytically predicted dependen
~16!, at the fixed value of the amplitude,e50.2. The analyti-
cal dependence is shown in two forms: the simplified one
per Eq. ~15! ~dashed line!, and the more accurate form
~dashed-dotted line! obtained by numerically solving the
transcendental equation~12! and substituting the result into
Eq. ~11!. The parts of both analytical curves beneath t
turning points are irrelevant: a direct inspection shows t
they correspond either to unphysical solutions withj2.1, or
to very broad solitons, for which, in fact, the model becom
overdamped, and the perturbation theory is invalid. A co
clusion suggested by Fig. 4 is that, although the accur
provided by the perturbation theory is not very high, it ca
tures the systematics reasonably. It is also noteworthy
the simplified approximation~15! is much worse than the ful
perturbative approximation based on Eq.~12!. This is not
surprising: even for the largest frequency,v[22, for which
the result of the direct simulations is given in Fig. 1, t
condition ~14!, necessary for applicability of the simplifie
approximation, takes the form 2.63@0.97.

Finally, the slow relaxation of the oscillations behind th
passing soliton can easily be analyzed. Assuming the os
lation amplitude to be small enough, one can linearize
~3!, yielding
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ẍn2~xn2122xn1xn11!5~21!ne sin~vt !xn2axn .
~17!

A solution to Eq.~17! can be sought as a sum of a rapid
oscillating staggered component and a slowly relaxing
staggered one,

xn~ t !5~21!nx~ t !1X~ t !. ~18!

Substituting this into Eq.~17! and collecting the staggere
and unstaggered terms, we obtain two simple equations

ẍ1a ẋ14x5eX sin~vt !, ~19!

Ẍ1aẊ5e sin~vt !x. ~20!

Using the fact that the friction is much weaker than the
ertia, and following the assumption according to which t
unstaggered part of the solution is slowly relaxing@in com-
parison with the rapid oscillations of sin(vt)], one can
readily obtain the following approximate solution to E
~19!:

x~ t !'2e~v224!21sin~vt !X~ t !. ~21!

Next, substituting Eq.~21! into Eq. ~20! and replacing the
rapidly oscillating term with its averaged value, we obtain
effective equation governing the slow relaxation of the st
left behind the passing soliton:
-

-
e

n
e

Ẍ1aẊ1 1
2 e2~v224!21X50. ~22!

Depending on the relation between the small parametera
and e2(v224)21, this equation may describe both oscill
tory and aperiodic relaxation to the final stateX50, which is
the equilibrium state that existed before the passage of
soliton. Furthermore, the relaxation frequency specified
Eq. ~22! is very close to the relaxation frequency observed
the simulations.

In summary, we have demonstrated, analytically and
merically, that a staggered parametric ac driving term c
support stable progressive motion of solitons in a dam
Toda lattice, while an unstaggered drive cannot. Also,
threshold condition for the existence of the ac-driven soli
predicted by the perturbation theory is in reasonable ag
ment with that found numerically. The simulations demo
strate that the state left behind the moving soliton gradu
relaxes back to the equilibrium state that existed before
passage of the soliton, which we easily explained anal
cally. Finally, we demonstrated that collisions between t
solitons moving with opposite velocities are nearly elastic
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