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Soliton motion in a parametrically ac-driven damped Toda lattice
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We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a
soliton in a Toda lattice with friction, while an unstaggered driving force cannot. A physical context of the
model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac
driving force is generated by a standing acoustic wave excited on the surface. Simulations demonstrate that the
state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually
relaxes back to the equilibrium state that existed before the passage of the soliton. The perturbation theory
predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical
prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two
counterpropagating solitons is also simulated, demonstrating that the collisions are, effectively, fully elastic.
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The important role of collective nonlinear excitations in tion (this was accomplished for this model in the so-called
the form of solitons in several condensed-matter physicslual form). ac-driven motion was predicted and found at the
contexts is widely recognizdd]. Particularly, discrete non- resonantsoliton velocities
linear models have received an increased amount of attention
lately [2]. Actual observation of nontrivial dynamical effects V=olm(2v+1), »=0*1%2..., 2

in realistic systems is often impeded by friction. An exter-..e” the velocity of the ac-driven motion is directly con-

nally supplied driving force is therefore necessary to SUSta"J'Erolled by the driving frequency.

a soliton in power balance with friction. In the simplest case, The obiective of the present work is to study moving soli-
progressive motion of a soliton in the presence of dissipation ) P Y 9

- o S . tons in a similar but essentially different model, vizpara-
l)snilu%%(;rstﬁ)?”g yilfa] gch%rgg]ge;%ﬁi]’ cv(v)zlt(l:r?ull:]rrjaﬁ: elgitjrr]f. A_metricallyac-driven damped TL, with the driving taken both
less obvious but physically important option is to drive al the staggered form,
soliton by an ac forcdwith no dc component[4]. It has
been done in a continuum system subjected to a periodic
spatial modulation5], and in a discrete system in the form = — aX,+(—1)"esin(wt)x @)
of a chain of nonlinearly interacting particlgs,7]. " n

A simple example of the latter system is the ac-drivenand in the unstaggered one, differing from E8) by the

Xn T €XP(Xn—Xp—1) — XP(Xp+1~ Xp)

damped Toda lattic€TL) absence of the multiplier{1)". The model(3) describes a
physical system in the form, for example, of a chain of par-
X+ €XP(Xp— Xp_1) — XP(Xn 41— Xp) ticles adsorbed on a solid surface and interacting through an
_ anharmonic repulsive potential. Additionally, the particles
=—aX,+(—1)"esin(wt), (1) interact with a uniform external field aligned perpendicular

to the adsorbing surfac€The field may simply be gravita-
wherex,, is the displacement of thath particle,e andw are  tion, or a dc electric field.In the latter case, all the particles
the amplitude and frequency of the driving force, ands  are assumed to have the same chaay® the interaction
the friction coefficient. This model describes a chain of non-between them within the chain is generated by the charges
linearly coupled particles in a dissipative environment driventhrough Coulomb repulsionThe effective drive is induced
by an externally applied electric ac field. The alternating sigrby a standing acousti@lastio wave excited on the surface,
in front of the driving term, & 1)" (a discrete pattern of this the end particles in the chain being fixed at the surface edges.
type is frequently calledtaggered8]), implies alternating If the length of the surface is, and the number of particles
electrical charges of the particles in the chain; without thes N+ 1 then the repelling particles are separated by the dis-
multiplier (—1)", the driving term can be trivially elimi- tanceL/N in the equilibrium state. The finite size of the
nated from Eq(1). In Ref.[6], it was demonstrated analyti- surface selects the wavelengths of the standing elastic waves
cally and numerically that the modél) indeed supports A=2L/M, whereM is an arbitrary integer. Commensurabil-
progressive motion of a soliton in the presence of finite fric-ity between the adsorbed chain and the standing wave takes
place providedM =pN, wherep=1,2,3... . If the com-
mensurability indeyp is odd, starting fronp= 1, the distance
*Permanent address: Department of Interdisciplinary Studiedhetween neighboring particles in the adsorbed chain is equal
Faculty of Engineering, Tel Aviv University, Tel Aviv 69975, Is- to an odd number of the standing half-waves, hence the ac
rael. driving forces acting upon the neighboring particles are
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400 450 oox FIG. 1. Typical examples of a moving front
with the staggered driving forcéa) weak friction
(e=0.01) and(b) relatively strong friction &
=0.18). In both casex=0.2 andw=12.4.

out of phase, yielding the staggered form of the driving term V=(&—1E)n(E?). (5)
in Eq. (3). Oppositely, wherp is even, the phase shift be-

tween the neighboring particles is a multiple ofr Zorre- | 5ynching the solitor(4) into the system(3) gives rise to
sponding to the unstaggered driving force. Finally, it is NeC-scenarios such as those depicted in Figa). dnd Xb). In the
essary to specify the boundary conditions for the standing,ge of Fig. (a), the friction is very weak ¢=0.01), and
elastic wave. If the edges of the surface are fixed, the pafne injtial kink transforms into a propagating front. In the
ticles in the adsorbed chain are located at the nddem- ke of the front, the particles demonstrate relatively large
amplitude pointsof the standing wave. It is easy to see that ogijjations, slowly relaxing to their equilibrium positions. In
in this case the external field oriented perpendicular to thgne case of stronger frictiora(=0.18), Fig. 1b) shows that
surface gives rise to the direct driving-force term in BN he front is still created, but the oscillations of the particles in
On the other hand, if the edges are free, the particles args \yake are strongly overdamped, so that they relax rapidly
located at the standing-wave maximum-amplitude pointsy, the injtial positions. In the latter case, the net shift in the
which gives rise to thparametricdrive in Eq.(3) (for suf-  osition of each particle generated by the passing front is

ficiently smallx,). o _ zero, making the driven front a more local phenomenon than
In the following we will first numerically demonstrate that e soliton of the unperturbed TL.

the model(3) is able to sustain propagating solitonlike solu- e sjtuation is quite different when the unstaggered driv-
tions whose velocity is locked by the frequency of the drive.jng force is applied. Figure 2 shows a representative example
Further, we demonstrate that only in the presence oft#g-  f the motion of a driven front in this case. The front is seen
gereddriving force are the solitonlike solutions supported. iy form in much the same fashion as in the model with the
Locking of the velocity to the driving frequency, and the fact giaggered drive. However, the front is gradually decreasing
that the solitonlike solutions need a staggered drive to exist;g amplitude and eventually ceases to exist. Nevertheless,
is then explained analytically and the threshold of the driving,e decay time may be rather long, up to 100 periods of the
amplitude is found. Finally the relaxation dynamics of the 5. yrive.
particles in the wake of. the soliton is studied analytically. Since the front in the staggered model behaves similarly
T_he system of equation(q) was solved numer_|c_a_lly for 2 to a soliton, it is interesting to launch counterpropagating
chain consisting of 500 particles. The natural initial condi-f,onts and observe their collision. An example is shown in
tion is the exact soliton solution of the unperturbed TL, g 3, where it is clearly seen that the fronts survive the
> collision. A closer study of trajectories of the two fronts
(&1 @) shows that the velocity is unchanged by the collision and,
[1+ & 2n—no=VO] |’ more surprisinglyno phase shifoccurs.

We now investigate the observed phenomenon analyti-
where the real parametef (—1<£<1) determines the cally and specify the region of its existence in parameter
properties of the solitorgwidth and velocity, andng is an  space. As if6], the analytical consideration will be based on
arbitrary phase constant. The velocityis the perturbation theory, assumiagand € to be sufficiently

Xp(t)=—1In| 1+
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FIG. 2. A representative example of the mov-
ing front in the case of the unstaggered driving
force. The parameters are=0.02, e=0.2, and
w=12.4.

+ o

small. In the zeroth-order approximation, the exact soliton . )
solution to the unperturbed TL equation is given in E4). (AP)inpur=(—1) GJ sin(wt) Xp(t)dt

— oo

Passage of the soliton through a given particle gives rise to

its displacement: +oo

E(—l)"ew—lf cog wt)X,(t)dt,  (9)
Axn:fwkn(t)dt:sgngln(g’z). (6)

where integration by parts was performed and the contribu-
If the drive is taken in the staggered form, as in E8), the  tion fromt— + « was neglectedsince it is zero on averape
analysis similar to that of Ref6] shows that the ac-driven The integral in Eq(9) can be calculated explicitly, inserting
r_notion of the soliton is expec;ted at the same resonant velocie expression foiX,(t) following from the unperturbed
ties (2). The unstaggered c.jr'|ve gives rise to the other specsgiton solution (4). The result depends on the arbitrary
trum of the resonant velocities, phase constar,; the threshold is determined by equating
the largest possible absolute value of the momentum input
V=ol2ay, v=x1x2,.... @ (9) to tghe a%solute value of the momentum I¢8s After a P

The goal of the analytical approach is to predict the mini-Simple calculation, this leads to the equality
mum (threshold value €, of the ac-drive amplitude that is

sufficient to compensate the friction and allows progressive o1 _ —2

motion of the soliton. Each value of the integein Egs.(2) aln(¢&2)= 2_7T€thr|s'n{2_[“’/(§ 1) ]In(&~ 9}

and (7) should thus give rise to a corresponding function w sin mw/(£—1/¢)]

e @, w). Steady motion of the soliton through the damped (10)

driven lattice is possible if the momentum lost by each par-

ticle under the action of the friction force; ax,, is bal- Replacing the combinationé¢ 1/€) ~in(&2) by what fol-
anced by the momentum input from the driving force, lows from Eq.(5), and using the resonant relatio@ or (7),
(—1)"e sin(wt)x,. The momentum loss of the particle can be one immediately concludes that in the c4%g correspond-
calculated as ing to the unstaggered drive, the factor multiplyigg in Eq.

(10) vanishes. This implies that the progressive motion of the
soliton cannot be supported by the unstaggered ac drive in
the presence of the friction. This agrees with our numerical
observations. However, substitution of Eg) for the stag-
where Eg.(6) was used. The momentum input is gered driving leads to a finite threshold,

+ o

(AP)Ioss:_af wkn(t)dt:_asgngln(g_z)a (8)
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FIG. 3. A typical example of the quasielastic
collision between two ac-driven solitons. The
values of the parameters ate=0.2, «=0.1, and
w=12.4.
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FIG. 4. The dependence between the driving
frequencyw and the maximum friction coeffi-
cient a at which a stable moving soliton can be
supported by the ac drive with the fixed ampli-
tudee=0.2. The dots are results of direct numeri-
cal simulations of Eq(3). The dash-dotted and
dashed curves represent, respectively, the analyti-
cal results provided by the full perturbative ap-
proximation based on Eg§ll) and(12), and by
the simplified approximatior{15). The parts of
the curves beneath the turning points are irrel-
evant(see text
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=af(w), (11

aw Lo T
Ethrzﬁln(go )sin PRy

where the parametéf, is determined, as a function efand
w, by a transcendental equation following from E(%.and

(5):

7(2v+1)(&— Léo) = w In( & %). (12)

Note that the linear relationship betweep and« in Eq.

resonance-locked value. That is, the simulations demonstrate
that if the initial velocity fulfills (w— dw)/7<V<(w

+ dw)/ 7, wheredw=3, the soliton will be created and sus-
tained at the resonant velocity.

The threshold of the driven motion was measured numeri-
cally in the following way. At a fixed value of the driving
amplitudee, the simulations were run at different values of
w, gradually increasing the friction coefficient until reaching
a maximum valuex,,,,, beyond which the drive could no
longer support the stable moving soliton. In terms of Eq.

(11 is an evident feature of the first-order approximation of(11),

the perturbation theory6]. The functioney,, is given implic-
itly by Egs.(11) and(12). To obtain an explicit dependence,
one needs to solve E@12) for &, which cannot be done
analytically, but an approximate solution is given by

2w

£oin n 2w
O m(2v+1)

m(2v+1)

: 13

ama €, 0) =€l f(w), (16)

this procedure implies a way to numerically measure the
function f(w).

In Fig. 4, the numerically obtained dependengg,(w) is
plotted, along with the analytically predicted dependence
(16), at the fixed value of the amplitudes=0.2. The analyti-

provided that the driving frequency is sufficiently large, socal dependence is shown in two forms: the simplified one as

that

In >In . (14

2w | 2w
m(2v+1) n m(2v+1)

In this limit, expression(11) takes an approximate explicit
form,

_awl 20
N n m(2v+1)

1
XSim’{Eﬁz(Zv-l— 1)/In( . (15

®
w(2v+1)

per Eqg. (15 (dashed ling and the more accurate form
(dashed-dotted lineobtained by numerically solving the
transcendental equatiqd2) and substituting the result into
Eqg. (11). The parts of both analytical curves beneath the
turning points are irrelevant: a direct inspection shows that
they correspond either to unphysical solutions vétb>1, or

to very broad solitons, for which, in fact, the model becomes
overdamped, and the perturbation theory is invalid. A con-
clusion suggested by Fig. 4 is that, although the accuracy
provided by the perturbation theory is not very high, it cap-
tures the systematics reasonably. It is also noteworthy that
the simplified approximatiofil5) is much worse than the full
perturbative approximation based on E@2). This is not
surprising: even for the largest frequeneays=22, for which

In order to verify the analysis we have compared thethe result of the direct simulations is given in Fig. 1, the
simulations with the analytical results, and found that thecondition (14), necessary for applicability of the simplified
propagating soliton can be created and sustained at resonayproximation, takes the form 2.63.97.

velocities given by Eq(2) when the soliton parametéris

Finally, the slow relaxation of the oscillations behind the

chosen in accordance with E(.2). Further, we have found passing soliton can easily be analyzed. Assuming the oscil-

that the soliton velocity locks to the driving frequency evenlation amplitude to be small enough, one can linearize Eg.
when the initial velocity deviates slightly from the (3), yielding
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Xn— (Xn—1— 2Xn+ X1 1) =(— 1) e sin( wt)X,— aXy, . X+ aX+ie?(w?—4)"1X=0. (22)
17)

A splut}on to Eq.(17) can be sought as a sum of a r§p|dly Depending on the relation between the small parameters
oscillating staggered component and a slowly relaxing un- 2, 2 1 : ) .
and e“(w“—4)" -, this equation may describe both oscilla-
staggered one, D . i S
tory and aperiodic relaxation to the final stde 0, which is
Xn(1)=(—1)"X(t) + X(1). (18)  the equilibrium state that existed before the passage of the
o o _ soliton. Furthermore, the relaxation frequency specified by
Substituting this into Eq(17) and collecting the staggered Eq. (22) is very close to the relaxation frequency observed in
and unstaggered terms, we obtain two simple equations: the simulations.

In summary, we have demonstrated, analytically and nu-
merically, that a staggered parametric ac driving term can
support stable progressive motion of solitons in a damped
Toda lattice, while an unstaggered drive cannot. Also, the
Using the fact that the friction is much weaker than the in-threshold condition for the existence of the ac-driven soliton

ertia, and following the assumption according to which thePredicted by the perturbation theory is in reasonable agree-

unstaggered part of the solution is slowly relax{ig com- ment with that found numerically. The simulations demon-
parison with the rapid oscillations of sinf)], one can Strate that the state left behind the moving soliton gradually

read"y obtain the fo”owing approxima‘te solution to Eq relaxes back to the equ“ibrium state that existed before the
(19): passage of the soliton, which we easily explained analyti-
cally. Finally, we demonstrated that collisions between two

X(t)~— e(w®—4) " Isin(wt) X(1). (21)  solitons moving with opposite velocities are nearly elastic.

X+ ax+4x=eX sin wt), (19

X+ aX= e sin(ot)x. (20)

Next, substituting Eq(21) into Eq. (20) and replacing the One of the author@B.A.M.) appreciates support from the
rapidly oscillating term with its averaged value, we obtain anLos Alamos National Laboratory. The work at Los Alamos
effective equation governing the slow relaxation of the statevas performed under the auspices of the U.S. DOE.

left behind the passing soliton:
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